题目内容
【题目】如图,已知点A(﹣m,n),B(0,m),且m、n满足+(n﹣5)2=0,点C在y轴上,将△ABC沿y轴折叠,使点A落在点D处.
(1)写出D点坐标并求A、D两点间的距离;
(2)若EF平分∠AED,若∠ACF﹣∠AEF=20°,求∠EFB的度数;
(3)过点C作QH平行于AB交x轴于点H,点Q在HC的延长线上,AB交x轴于点R,CP、RP分别平分∠BCQ和∠ARX,当点C在y轴上运动时,∠CPR的度数是否发生变化?若不变,求其度数;若变化,求其变化范围.
【答案】(1)10;(2)20°;(3)∠CPH=45°.理由见解析.
【解析】分析:(1)先由非负数的性质求出m,n的值,得到A点坐标,再根据折叠的性质得点D与点A关于y轴对称,再根据关于y轴对称的点的坐标特征得到D点坐标,然后计算点A与点D的横坐标之差即可得到A、D两点间的距离;
(2)根据折叠的性质得∠DCF=∠ACF,再利用三角形外角性质得∠DCF=∠EFB+∠DEF,则∠EFB=∠ACF-∠DEF,又∠DEF=∠AEF,所以∠EFB=∠ACF-∠AEF=20°;
(3)根据平行线的性质由QH∥AB得到∠QCP=∠1,∠ARX=∠3,再根据角平分线的定义得∠QCP=∠BCQ,∠2=∠ARX,则∠1=∠BCQ,∠2=∠3,接着利用三角形外角性质得∠BCQ=90°+∠3,所以2∠1=90°+2∠2,即∠1=45°+∠2,然根据∠1=∠CPR+∠2即可得到∠CPR=45°.
详解:(1)∵+(n-5)2=0,
∴m+5=0,n-5=0,
∴m=-5,n=5,
∴A点坐标为(5,5),
∵△ABC沿y轴折叠,使点A落在点D处,
∴点D与点A关于y轴对称,
∴D点坐标为(-5,5);
∴AD=5-(-5)=10;
(2)如图2,
∵△ABC沿x轴折叠,使点A落在点D处,
∴∠DCF=∠ACF,
∵∠DCF=∠EFB+∠DEF,
∴∠EFB=∠ACF-∠DEF,
∵EF平分∠AED,
∴∠DEF=∠AEF,
∴∠EFB=∠ACF-∠AEF=20°;
(3)∠CPH=45°.理由如下:
如图3,
∵QH∥AB,
∴∠QCP=∠1,∠ARX=∠3,
∵CP、RP分别平分∠BCQ和∠ARX,
∴∠QCP=∠BCQ,∠2=∠ARX,
∴∠1=∠BCQ,∠2=∠3,
∵∠BCQ=90°+∠3,
∴2∠1=90°+2∠2,即∠1=45°+∠2,
∵∠1=∠CPR+∠2,
∴∠CPR=45°.