题目内容
【题目】简单多面体是各个面都是多边形组成的几何体,十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)和棱数(E)之间存在一个有趣的关系式,称为欧拉公式.如表是根据左边的多面体模型列出的不完整的表:
多面体 | 顶点数 | 面数 | 棱数 |
四面体 | 4 | 4 | 6 |
长方体 | 8 | 6 | |
正八面体 | 8 | 12 |
现在有一个多面体,它的每一个面都是三角形,它的面数(F)和棱数(E)的和为30,则这个多面体的顶点数V=_____.
【答案】8
【解析】
直接利用V,E,F分别表示凸多面体的顶点数、棱数、面数,欧拉公式为V﹣E+F=2,求出答案.
解:∵现在有一个多面体,它的每一个面都是三角形,它的面数(F)和棱数(E)的和为30,
∴这个多面体的顶点数V=2+E﹣F,
∵每一个面都是三角形,
∴每相邻两条边重合为一条棱,
∴E=F,
∵E+F=30,
∴F=12,
∴E=18,
∴V=2+E﹣F=2+1812=8,
故答案为8.
练习册系列答案
相关题目
【题目】某批乒乓球的质量检验结果如下:
抽取的乒乓球数n | 50 | 100 | 150 | 200 | 350 | 400 | 450 | 500 |
优等品的频数m | 40 | 96 | 126 | 176 | 322 | 364 | 405 | 450 |
优等品的频率 | 0.80 | 0.96 | 0.84 | 0.92 | 0.90 |
(1)填写表中的空格;
(2)画出这批乒乓球优等品频率的折线统计图;
(3)这批乒乓球优等品概率的估计值是多少?