题目内容
【题目】Rt△ABC中,∠A=90°,角平分线AE、中线AD、高线AH的大小关系是( )
A.AH<AE<AD
B.AH<AD<AE
C.AH≤AD≤AE
D.AH≤AE≤AD
【答案】D
【解析】①Rt△ABC中,AB=AC;(图①)
根据等腰三角形三线合一的性质知:
AD、AH、AE互相重合,此时AD=AH=AE;
②Rt△ABC中,AB≠AC;(设AC>AB , 如图②)
在Rt△AHE中,由于AE是斜边,故AE>AH;
同理可证AD>AH;
∵∠AED>∠AHD=90°,∠ADH<∠AHE=90°
∴∠AED>∠ADE;
根据大角对大边知:AD>AE;
即AD>AE>AH;
综上所述,角平分线AE、中线AD、高线AH的大小关系是AH≤AE≤AD;
故选D.
【考点精析】认真审题,首先需要了解解直角三角形(解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)).
练习册系列答案
相关题目