题目内容
【题目】已知:如图所示,在平面直角坐标系中,四边形是矩形,,,动点从点出发,沿射线方向以每秒2个单位长度的速度运动;同时,动点从点出发,沿轴正半轴方向以每秒1个单位长度的速度运动,设点、点的运动时间为
(1)当时,求经过点,,三点的抛物线的解析式;
(2)当时,求的值;
(3)当线段与线段相交于点,且时,求的值;
(4)连接,当点,在运动过程中,记△与矩形重叠部分的面积为,求与的函数关系式
【答案】(1)y=﹣x2+3x;(2);(3)t为3s;(4)S=
【解析】
(1)可求得P点坐标,由O、P、A的坐标,利用待定系数法可求得抛物线解析式;
(2)当t=2s时,可知P与点B重合,在Rt△ABQ中可求得tan∠QPA的值;
(3)用t可表示出BP和AQ的长,由△PBM∽△QAM可得到关于t的方程,可求得t的值;
(4)当点Q在线段OA上时,S=S△CPQ;当点Q在线段OA上,且点P在线段CB的延长线上时,由相似三角形的性质可用t表示出AM的长,由S=S四边形BCQM=S矩形OABCS△COQS△AMQ,可求得S与t的关系式;当点Q在OA的延长线上时,设CQ交AB于点M,利用△AQM∽△BCM可用t表示出AM,从而可表示出BM,S=S△CBM,可求得答案.
解:(1)当t=1s时,则CP=2,
∵OC=3,四边形OABC是矩形,
∴P(2,3),且A(4,0),
∵抛物线过原点O,
∴可设抛物线解析式为y=ax2+bx,
∴,解得,
∴过O、P、A三点的抛物线的解析式为y=﹣x2+3x;
(2)当t=2s时,则CP=2×2=4=BC,即点P与点B重合,OQ=2,如图1,
∴AQ=OA﹣OQ=4﹣2=2,且AP=OC=3,
∴tan∠QPA==;
(3)当线段PQ与线段AB相交于点M,则可知点Q在线段OA上,点P在线段CB的延长线上,如图2,
则CP=2t,OQ=t,
∴BP=PC﹣CB=2t﹣4,AQ=OA﹣OQ=4﹣t,
∵PC∥OA,
∴△PBM∽△QAM,
∴,且BM=2AM,
∴=2,解得t=3,
∴当线段PQ与线段AB相交于点M,且BM=2AM时,t为3s;
(4)当0≤t≤2时,如图3,
由题意可知CP=2t,
∴S=S△PCQ=×2t×3=3t;
当2<t≤4时,设PQ交AB于点M,如图4,
由题意可知PC=2t,OQ=t,则BP=2t﹣4,AQ=4﹣t,
同(3)可得=,
∴BM=AM,
∴3﹣AM=AM,解得AM=,
∴S=S四边形BCQM=S矩形OABC﹣S△COQ﹣S△AMQ=3×4﹣×t×3﹣×(4﹣t)×=24﹣﹣3t;
当t>4时,设CQ与AB交于点M,如图5,
由题意可知OQ=t,AQ=t﹣4,
∵AB∥OC,
∴,即=,解得AM=,
∴BM=3﹣,
∴S=S△BCM=×4×;
综上可知S=.
【题目】为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若矩形空地的面积为160m2,求x的值;
(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.
甲 | 乙 | 丙 | |
单价(元/棵) | 14 | 16 | 28 |
合理用地(m2/棵) | 0.4 | 1 | 0.4 |