题目内容
【题目】如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.
(1)求证:PG与⊙O相切;
(2)若=,求的值;
(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.
【答案】(1)证明见解析;(2);(3)OE=2﹣4.
【解析】
(1)要证PG与⊙O相切只需证明∠OBG=90°,由∠A与∠BDC是同弧所对圆周角且∠BDC=∠DBO可得∠CBG=∠DBO,结合∠DBO+∠OBC=90°即可得证;
(2)求需将BE与OC或OC相等线段放入两三角形中,通过相似求解可得,作OM⊥AC、连接OA,证△BEF∽△OAM得,由AM=AC、OA=OC知,结合即可得;
(3)Rt△DBC中求得BC=8、∠DCB=30°,在Rt△EFC中设EF=x,知EC=2x、FC=x、BF=8﹣x,继而在Rt△BEF中利用勾股定理求出x的,从而得出答案.
(1)如图,连接OB,则OB=OD,
∴∠BDC=∠DBO,
∵∠BAC=∠BDC、∠BDC=∠GBC,
∴∠GBC=∠BDC,
∵CD是⊙O的切线,
∴∠DBO+∠OBC=90°,
∴∠GBC+∠OBC=90°,
∴∠GBO=90°,
∴PG与⊙O相切;
(2)过点O作OM⊥AC于点M,连接OA,
则∠AOM=∠COM=∠AOC,
∵,
∴∠ABC=∠AOC,
又∵∠EFB=∠OGA=90°,
∴△BEF∽△OAM,
∴,
∵AM=AC,OA=OC,
∴,
又∵,
∴;
(3)∵PD=OD,∠PBO=90°,
∴BD=OD=8,
在Rt△DBC中,BC==8,
又∵OD=OB,
∴△DOB是等边三角形,
∴∠DOB=60°,
∵∠DOB=∠OBC+∠OCB,OB=OC,
∴∠OCB=30°,
∴,=,
∴可设EF=x,则EC=2x、FC=x,
∴BF=8﹣x,
在Rt△BEF中,BE2=EF2+BF2,
∴100=x2+(8﹣x)2,
解得:x=6±,
∵6+>8,舍去,
∴x=6﹣,
∴EC=12﹣2,
∴OE=8﹣(12﹣2)=2﹣4.