题目内容
【题目】已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连结DE,DE=.
(1)求证:;
(2)求EM的长;
(3)求sin∠EOB的值.
【答案】(1)证明:连接AC、EB
∵∠A=∠BEC,∠B=∠ACE
∴△AMC∽△EMB
∴
∴--------------------------------------------------------3分
(2)解:∵DC是⊙O的直径
∴∠DEC=90°
∴
∵DE=,CD=8,且EC为正数
∴EC=7
∵M为OB的中点
∴BM=2,AM=6
∵,且EM>MC
∴EM=4------------------------------------------------------------------------------7分
(3)解:过点E作EF⊥AB,垂足为点F
∵OE=4,EM=4
∴OE=EM
∴OF=FM=1
∴EF=
∴sin∠EOB=---------------------------------------------------------------------10分
【解析】(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;
(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;
(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.
练习册系列答案
相关题目