题目内容
【题目】如图,已知抛物线经过
的三个顶点,其中点
,点
,
轴,点
是直线
下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点且与
轴平行的直线
与直线
,
分别交于点
,
,当四边形
的面积最大时,求点
的坐标;
(3)当点为抛物线的顶点时,在直线
上是否存在点
,使得以
,
,
为顶点的三角形与
相似,若存在,求出点
的坐标;若不存在,请说明理由.
【答案】(1);(2)点
的坐标是
;(3)满足条件的点
有两个,坐标分别是
或
.
【解析】
(1)根据待定系数法,可得函数解析式;
(2)根据平行于x轴的直线上点的纵坐标相等,可得C点的纵坐标,根据自变量与函数值的对应关系,可得C点坐标,根据待定系数法,可得AB的解析式,根据直线上的点满足函数解析式,可得E点坐标,根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;
(3)根据等腰直角三角形的性质,可得∠PCF=∠EAF,根据相似三角形的判定,可得关于t的方程,根据解方程,可得答案.
解:(1)把点,
的坐标代入
,
得,解得
.
∴抛物线的解析式是.
(2)∵轴,
,
由,解得
,
(舍),
∴.
设直线的解析式是
,
由,解得
.
则直线的解析式是
.
设点的坐标为
,
则点的坐标为
,
.
∵,
,
∴
.
又∵,
则当时,四边形
的面积的最大值是
,
此时点的坐标是
.
(3)由,得顶点
的坐标是
,此时
,
,
则在中,
,∴
.
同理可求,∴
,
∴在直线上存在满足条件的
,如图
或
.
可求,
,
,
①当时,设
,
由,得
,解得
.
②当,设
,
由,得
,解得
.
综上,满足条件的点有两个,坐标分别是
或
.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”的次数m | 68 | 111 | 136 | 345 | 546 | 701 |
落在“铅笔”的频率 (结果保留小数点后两位) | 0.68 | 0.74 | 0.68 | 0.69 | 0.68 | 0.70 |
(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)
(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;
(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.