题目内容
【题目】如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,
(1)问直线EF与AB有怎样的位置关系?加以证明;
(2)若∠CEF=70°,求∠ACB的度数.
【答案】(1)EF和AB的关系为平行关系;(2)∠ACB=40°.
【解析】
(1)由平行线的性质推出∠DCB=∠ABC=70°,结合∠CBF=20°,推出∠ABF=50°,即可得出∠EFB+∠ABF=180°,根据平行线的判定即可推出EF∥AB;
(2)根据(1)推出的结论,推出EF∥CD,根据平行线的性质推出∠ECD=110°,根据∠DCB=70°,即可求出∠ACB的度数.
解:(1)EF和AB的关系为平行关系.理由如下:
∵CD∥AB,∠DCB=70°,
∴∠DCB=∠ABC=70°,
∵∠CBF=20°,
∴∠ABF=∠ABC﹣∠CBF=50°,
∵∠EFB=130°,
∴∠ABF+∠EFB=50°+130°=180°,
∴EF∥AB;
(2)∵EF∥AB,CD∥AB,
∴EF∥CD,
∵∠CEF=70°,
∴∠ECD=110°,
∵∠DCB=70°,
∴∠ACB=∠ECD﹣∠DCB,
∴∠ACB=40°.
练习册系列答案
相关题目