题目内容
【题目】如图,△ABC与△A′ B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为 _______。
【答案】25:9
【解析】试题解析:过A 作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,
∵△ABC与△A′B′C′都是等腰三角形,
∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,
∴AD=ABsinB,A′D′=A′B′sinB′,BC=2BD=2ABcosB,B′C′=2B′D′=2A′B′cosB′,
∵∠B+∠B′=90°,
∴sinB=cosB′,sinB′=cosB,
∵S△BAC=ADBC=ABsinB2ABcosB=25sinBcosB,
S△A′B′C′=A′D′B′C′=A′B′cosB′2A′B′sinB′=9sinB′cosB′,
∴S△BAC:S△A′B′C′=25:9.
练习册系列答案
相关题目
【题目】某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:
组号 | 分组 | 频数 |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值.
(2)若用扇形统计图来描述,求分数在8≤m<9内所对应的扇形的圆心角的度数.
(3)将在第一组内的两名选手记为A1,A2,在第四组内的两名选手记为B1,B2, 从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率.