题目内容
【题目】如图,在△ABC中,AD,BD分别平分∠CAB和∠CBA,相交于点D.
(1)如图1,过点D作DE∥AC,DF∥BC分别交AB于点E、F. ①若∠EDF=80°,则∠C为多少?
②若∠EDF=x°,证明:∠ADB=(90+ )°.
(2)如图2,若DE,BE分别平分∠ADB和∠ABD,且EF,BF分别平分∠BED和∠EBD,若∠BFE的度数是整数,求∠BFE至少是多少度?
【答案】
(1)解:∵∠EDF=80°,
∴∠DEF+∠EDF=180°﹣80°=100°,
∵DE∥AC,
∴∠BED=∠BAC,
同理得:∠EFD=∠ABC,
∴∠ABC+∠BAC=∠DEF+∠EDF=100°,
∴∠C=80°
故答案为:80°;
②∵∠EDF=x°,
∴∠DEF+∠EFD=180°﹣x°,
∵DE∥AC,
∴∠BED=∠BAC,
∵AD平分∠BAC,
∴∠BAC=2∠BAD,
∴∠DEF=2∠BAD,
同理得:∠EFD=2∠ABD,
∴∠BAD+∠ABD= ,
∴∠ADB=180°﹣∠ABD﹣∠BAD=180°﹣ =90°+ =(90+ )°
(2)解:∵DE平分∠ADB,
∴∠BDE= ∠ADB=45°+ ,
∵∠BED+∠DBE=180°﹣∠BDE,
∵EF,BF分别平分∠BED和∠EBD,
∴ ∠BED+ ∠DBE=90°﹣ ∠BDE,
即∠BEF+∠EBF=90°﹣ ∠BDE,
∴∠BFE=180°﹣(∠BEF+∠EBF),
=180°﹣(90°﹣ ∠BDE),
=90°+ ∠BDE,
=90°+ (45°+ ),
=90°+22°+ + ,
=112°+ ,
∵∠BFE的度数是整数,
当x=4时,∠BFE=113°.
答:∠BFE至少是113度
【解析】(1)①先根据三角形的内角和求得:∠DEF+∠EDF=100°,再由平行线的性质得:∠BED=∠BAC,∠EFD=∠ABC,所以∠C=180°﹣100°=80°;②同理先求出∠DEF+∠EFD=180°﹣x°,由平行线的性质和角平分线的定义得:∠DEF=2∠BAD,同理得:∠EFD=2∠ABD,则∠BAD+∠ABD= ,再由三角形内角和可求得结论;(2)依据②的结论得:∠ADB=(90+ )°,则∠BDE= ∠ADB=45°+ ,由三角形的内角和定理得:∠BED+∠DBE=180°﹣∠BDE,再由角平分线定义得: ∠BED+ ∠DBE=90°﹣ ∠BDE,代入∠BFE=180°﹣(∠BEF+∠EBF),可得结论.
【考点精析】本题主要考查了平行线的性质和三角形的内角和外角的相关知识点,需要掌握两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角才能正确解答此题.
【题目】某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:
组号 | 分组 | 频数 |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值.
(2)若用扇形统计图来描述,求分数在8≤m<9内所对应的扇形的圆心角的度数.
(3)将在第一组内的两名选手记为A1,A2,在第四组内的两名选手记为B1,B2, 从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率.
【题目】九年级某班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).
时间x(天) | 1 | 30 | 60 | 90 |
每天销售量p(件) | 198 | 140 | 80 | 20 |
(1)求出w与x的函数关系式;
(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;
(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.