题目内容

【题目】已知:如图1.正方形ABCD,过点A作∠EAF=90°,两边分别交直线BC于点E,交线段CD于点F,GAE中点,连接BG

(1)求证:ABE≌△ADF

(2)如图2,过点GBG的垂线交对角线AC于点H,求证:GH=GB;

(3)如图3,连接HF,若CH=3AH,AD=2,求线段HF的长.

【答案】(1)证明见解析;(2)证明见解析;(3)5.

【解析】试题分析:(1)如图1中,由△ABE≌△ADF,推出∠AFD=∠E,由AG=GE,推出GB=GE=GA,推出∠E=∠GBE=∠AFD,由∠GBE+∠GBC=180°,推出∠AFD+∠GBC=180°即可;

(2)如图2中,连接BDACO,连接OG、BH、取BH的中点K,连接GK、OK.只要证明O、H、G、B四点共圆,由AG=GE,AO=OC.推出OG∥CE,推出∠GOB=∠OBC=45°,即可解决问题;

(3)如图3中,如图3中,设OGABT,GHABP.,作HM⊥DFM.只要证明∠EAB=∠GBP=∠PGT=∠HBO,推出tan∠EAB=tan∠HBO=,由CH=3AH,OA=OC=OB,推出tan∠EAB=tan∠HBO==,BE=DF=,在RtHMF中,利用勾股定理即可解决问题.

试题解析:(1)如图1,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠AEF=90°,

∴∠EAB=∠DAF,∵∠ABE=∠ADF=90°,∴△ABE≌△ADF,∴∠AFD=∠E,

∵AG=GE,∴GB=GE=GA,∴∠E=∠GBE=∠AFD,∵∠GBE+∠GBC=180°,∴∠AFD+∠GBC=180°;

(2)如图2,连接BD交AC于O,连接OG、BH、取BH的中点K,连接GK、OK,

∵∠BGH=∠BOH=90°,BK=KH,∴GK=KH=OK=KB,∴O、H、G、B四点共圆,

∵AG=GE,AO=OC,∴OG∥CE,

∴∠GOB=∠OBC=45°,∴∠GOH=∠GBH=45°,∵∠BGH=90°,

∴∠GBH=∠GHB=45°, ∴GH=GB;

(3)如图3,设OG交AB于T,GH交AB于P,作HM⊥DF于M,

∵OG∥EC,AB⊥CE,∴OG⊥AB,易证∠EAB=∠GBP=∠PGT=∠HBO,

∴tan∠EAB=tan∠HBO=,∵CH=3AH,OA=OC=OB,∴tan∠EAB=tan∠HBO==

∵AB=AD=2,∴BE=DF=,在Rt△HMF中,易证FM=,HM=

∴HF==5.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网