题目内容
【题目】一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“鄂”、“州”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,球上的汉字刚好是“鄂”的概率为多少?
(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“灵秀”或“鄂州”的概率P1;
(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“灵秀”或“鄂州”的概率为P2,指出P1,P2的大小关系(请直接写出结论,不必证明).
【答案】解:(1)∵有汉字“灵”、“秀”、“鄂”、“州”的四个小球,任取一球,共有4种不同结果,
∴球上汉字刚好是“鄂”的概率 P=。
(2)画树状图得:
∵共有12种不同取法,能满足要求的有4种,
∴P1=。
(3)画树状图得:
∵共有16种不同取法,能满足要求的有4种,
∴P2=。
∴P1>P2。
【解析】
试题(1)由有汉字“灵”、“秀”、“鄂”、“州”的四个小球,任取一球,共有4种不同结果,利用概率公式直接求解即可求得答案。
(2)首先根据题意画出树状图或列表,然后根据图表求得所有等可能的结果与甲取出的两个球上的汉字恰能组成“灵秀”或“鄂州”的情况,再利用概率公式即可求得答案;注意是不放回实验。
(3)首先根据题意画出树状图或列表,然后根据图表求得所有等可能的结果与甲取出的两个球上的汉字恰能组成“灵秀”或“鄂州”的情况,再利用概率公式即可求得答案;注意是放回实验。
练习册系列答案
相关题目