题目内容
【题目】定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1=﹣x2时,都有y1=y2,称该函数为偶函数,根据以上定义,可以判断下面所给的函数中,是偶函数的有__(填上所有正确答案的序号).
①y=2x; ②y=﹣x+1; ③y=x2; ④y=﹣;
【答案】③.
【解析】
根据所给的定义,把x1和x2分别代入函数解析式进行判断即可.
在①中,y1=2x1,y2=2x2=﹣2x1,此时y1≠y2,∴y=2x不是偶函数,
在②中,y1=﹣x1+1,y2=﹣x2+1=x1+1,此时y1≠y2,∴y=﹣x+1不是偶函数,
在③中,y1=x12,y2=x22=(﹣x1)2=x12,此时y1=y2,∴y=x2是偶函数,
在④中,y1=﹣,y2=﹣=﹣=,此时y1≠y2,∴y=﹣不是偶函数,
∴是偶函数的为③,
故答案为:③.
练习册系列答案
相关题目
【题目】“全民防控新冠病毒”期间某公司推出一款消毒产品,成本价8元/千克,经过市场调查,该产品的日销售量(千克)与销售单价(元/千克)之间满足一次函数关系,该产品的日销售量与销售单价几组对应值如表:
销售单价(元/千克) | 12 | 16 | 20 | 24 |
日销售量(千克) | 220 | 180 | 140 |
(注:日销售利润日销售量(销售单价成本单价)
(1)求关于的函数解析式(不要求写出的取值范围);
(2)根据以上信息,填空:
①_______千克;
②当销售价格_______元时,日销售利润最大,最大值是_______元;
(3)该公司决定从每天的销售利润中捐赠100元给“精准扶贫”对象,为了保证捐赠后每天的剩余利润不低于1500元,试确定该产品销售单价的范围.