题目内容

【题目】已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.

(1)求证:∠BCP=∠BAN
(2)求证:

【答案】
(1)证明:∵AC为⊙O直径,

∴∠ANC=90°,

∴∠NAC+∠ACN=90°,

∵AB=AC,

∴∠BAN=∠CAN,

∵PC是⊙O的切线,

∴∠ACP=90°,

∴∠ACN+∠PCB=90°,

∴∠BCP=∠CAN,

∴∠BCP=∠BAN;


(2)证明:∵AB=AC,

∴∠ABC=∠ACB,

∵∠PBC+∠ABC=∠AMN+∠ACN=180°,

∴∠PBC=∠AMN,

由(1)知∠BCP=∠BAN,

∴△BPC∽△MNA,


【解析】(1)根据等边对等角得到∠BAN=∠CAN,由PC是⊙O的切线,根据切线的性质得到∠BCP=∠BAN;(2)根据两角对应相等两三角形相似,得到△BPC∽△MNA,得到比例.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网