题目内容

【题目】已知直线m,n相交于点B,点A,C分别为直线m,n上的点,AB=BC=1,且∠ABC=60°,点E是直线m上的一个动点,点D是直线n上的一个动点,运动过程中始终满足DE=CE.

(1)如图1,当点E运动到线段AB的中点,点D在线段CB的延长线上时,求BD的长.
(2)如图2,当点E在线段AB上运动,点D在线段CB的延长线上时,试确定线段BD与AE的数量关系,并说明理由.

【答案】
(1)解:∵∠ABC=60°,AB=BC,

∴△ABC为等边三角形,

∴∠ACB=60°,

∵点E是线段AB的中点,

∴∠ECB= ∠ACB=30°,

∵DE=CE,

∴∠EDB=∠ECB=30°,

∵∠ABC=∠EDB+∠DEB,

∴∠DEB=30°=∠EDB,

∴BD=DE= AB=


(2)解:BD=AE;理由如下:

过点E作EF∥BC交AC于点F,如图所示:

∵EF∥BC,

∴∠AFE=∠ACB=60°,

∴∠EFC=120°,∠AFE=∠A,

∴EF=EA,

∵∠ABC=60°,

∴∠EBD=120°,

∴∠EFC=∠EBD,

∵CE=DE,

∴∠EDB=∠ECB,

∵∠EDB+∠DEB=∠ECB+∠ECF=60°,

∴∠DEB=∠ECF,

在△EDB和△CEF中,

∴△EDB≌△CEF(AAS),

∴BD=EF,

∵EF=EA,

∴BD=AE.


【解析】(1)证明△ABC为等边三角形,得出∠ACB=∠ABC=60°,由等边三角形的性质得出∠ECB= ∠ACB=30°,由等腰三角形的性质得出∠EDB=30°,由三角形的外角性质得出∠DEB=∠EDB,即可得出结论;(2过点E作EF∥BC交AC于点F,由平行线的性质得出∠AFE=∠ACB=60°,证出∠EFC=120°,∠AFE=∠A,得出EF=EA,证出∠DEB=∠ECF,由AAS证明△EDB≌△CEF,得出BD=EF,即可得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网