题目内容
【题目】(1)把下面的证明补充完整:
如图,已知直线EF分别交直线AB、CD于点M、N,AB∥CD,MG平分∠EMB,NH平分∠END.求证:MG∥NH
证明:∵AB∥CD(已知)
∴∠EMB=∠END( )
∵MG平分∠EMB,NH平分∠END(已知),
∴∠EMG=∠EMB,∠ENH=∠END( ),
∴ (等量代换)
∴MG∥NH( ).
(2)你在第(1)小题的证明过程中,应用了哪两个互逆的真命题?请直接写出这一对互逆的真命题.
【答案】(1)见解析;(2)两直线平行,同位角相等;同位角相等,两直线平行.
【解析】
(1)先利用平行线的性质得∠EMB=∠END,再根据角平分线的定义得到∠EMG=∠EMB,∠ENH=∠END,则∠EMG=∠ENH,然后根据平行线的判定方法可得到MG∥NH.
(2)由(1)可以得到答案.
证明:∵AB∥CD(已知)
∴∠EMB=∠END( 两直线平行,同位角相等 )
∵MG平分∠EMB,NH平分∠END(已知)
∴∠EMG=∠EMB,∠ENH=∠END(角平分线定义),
∴ ∠EMG=∠ENH(等量代换)
∴MG∥NH(同位角相等,两直线平行).
(2)两直线平行,同位角相等;同位角相等,两直线平行
练习册系列答案
相关题目