题目内容
【题目】如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠ACB的外角平分线CF于点F,交∠ACB内角平分线CE于E.
(1)求证:OE=OF;
(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论;
(3)在(2)的条件下,试猜想当△ABC满足什么条件时使四边形AECF是正方形,请直接写出你的结论.
【答案】
(1)
证明:如图1中,
∵CE平分∠ACB,
∴∠ACE=∠BCE,
∵MN∥BC,
∴∠OEC=∠ECB,
∴∠OEC=∠OCE,
∴OE=OC,
同理,OC=OF,
∴OE=OF.
(2)
结论:当点O运动到AC中点处时,四边形AECF是矩形.
理由:如图2中,
如图AO=CO,EO=FO,
∴四边形AECF为平行四边形,
∵CE平分∠ACB,
∴∠ACE= ∠ACB,
同理,∠ACF= ∠ACG,
∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°,
∴四边形AECF是矩形.:
(3)
解:结论:当∠ACB=90°时,四边形AECF是正方形
理由:∵∠BCA=90°,
∵MN∥BC,
∴∠BCA=∠AOM=90°,
∴AC⊥EF,
∴四边形AECF是正方形..
【解析】(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.(3)利用已知条件及正方形的判定方法解答.
【考点精析】解答此题的关键在于理解正方形的判定方法的相关知识,掌握先判定一个四边形是矩形,再判定出有一组邻边相等;先判定一个四边形是菱形,再判定出有一个角是直角.
练习册系列答案
相关题目