题目内容
【题目】将边长OA=8,OC=10的矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在轴和y轴上.在OA边上选取适当的点E,连接CE,将△EOC沿CE折叠。
(1)如图①,当点O落在AB边上的点D处时,点E的坐标为 ;
(2)如图②,当点O落在矩形OABC内部的点D处时,过点E作EG∥轴交CD于点H,交BC于点G.求证:EH=CH;
(3)在(2)的条件下,设H(m,n),写出m与n之间的关系式 ;
(4)如图③,将矩形OABC变为正方形,OC=10,当点E为AO中点时,点O落在正方形OABC内部的点D处,延长CD交AB于点T,求此时AT的长度。
【答案】(1)(0,5);(2)∠1=∠2.∵EG∥x轴,∴∠1=∠3. ∴∠2=∠3.∴EH=CH.
(3)(4).
【解析】试题分析:(1)根据翻折变换的性质以及勾股定理得出BD的长,进而得出AE,EO的长即可得出答案;
(2)利用平行线的性质以及等角对等边得出答案即可;
(3)首先得出Rt△ATE≌Rt△DTE进而得出AT=DT.设AT=x,则BT=10-x,TC=10+x,在Rt△BTC中,BT2+BC2=TC2,求出即可.
试题解析:(1)∵将边长OA=8,OC=10的矩形OABC放在平面直角坐标系中,点O落在AB边上的点D处,
∴OC=DC=10,
∵BC=8,
∴BD==6,
∴AD=10-6=4,
设AE=x,则EO=8-x,
∴x2+42=(8-x)2,
解得:x=3,
∴AE=3,
则EO=8-3=5,
∴点E的坐标为:(0,5),
故答案为:(0,5);
(2)∵EG∥x轴,∴∠OCE=∠CEH,
由折叠可知∠OCE=∠ECH,
∴∠CEH=∠ECH,
∴EH=CH;
(3)连接ET,
由题意可知,ED=EO,ED⊥TC,DC=OC=10,
∵E是AO中点,∴AE=EO,
∴AE=ED,
在Rt△ATE和Rt△DTE中,
,
∴Rt△ATE≌Rt△DTE(HL),
∴AT=DT,
设,则,,
在Rt△BTC中,,
即,
解得,即.
【题目】某路公交车从起点经过A、B、C、D站到达终点,一路上下乘客如下表所示。(用正数表示上车的人数,负数表示下车的人数)
起点 | A | B | C | D | 终点 | |
上车的人数 | 18 | 15 | 12 | 7 | 5 | 0 |
下车的人数 | 0 | -3 | -4 | -10 | -11 |
(1)到终点下车还有_________ 人;
(2)车行驶在那两站之间车上的乘客最多?_______站和________站;
(3)若每人乘坐一站需买票1元,问该车出车一次能收入多少钱?写出算式.