题目内容
【题目】(1)已知3x2-5x+1=0,求下列各式的值:①3x+;②9x2+;
(2)若3xm+1-2xn-1+xn是关于x的二次多项式,试求3(m-n)2-4(n-m)2-(m-n)3+2(n-m)3的值.
【答案】(1)①3x+=5; ②9x2+=19;(2)当m=1,n=2时,原式=2;当m=1,n=1时,原式=0;当m=0,n=2时,原式=20;当m=-1,n=2时,原式=72.
【解析】
(1)①根据3x2﹣5x+1=0,等式两边同除以x即可解答本题;
②根据①中的结果,两边同时平方,再化简即可解答本题;
(2)先化简所求式子,再根据3xm+1﹣2xn﹣1+xn是关于x的二次多项式,可以求得m、n的值,然后代入化简后的式子即可解答本题.
(1)①∵3x2﹣5x+1=0,∴3x﹣50,∴3x5;
②∵3x5,∴,∴25,∴19;
(2)3(m﹣n)2﹣4(n﹣m)2﹣(m﹣n)3+2(n﹣m)3
=﹣(m﹣n)2+3(n﹣m)3
∵3xm+1﹣2xn﹣1+xn是关于x的二次多项式,∴或或或,解得:或或或.
①当m=1,n=2时,原式=﹣(1﹣2)2+3(2﹣1)3=﹣1+3=2;
②当m=1,n=1时,原式=﹣(1﹣1)2+3(1﹣1)3=0;
③当m=0,n=2时,原式=﹣(0﹣2)2+3(2﹣0)3=﹣4+24=20;
④当m=﹣1,n=2时,原式=﹣(﹣1﹣2)2+3(2+1)3=﹣9+81=72.
综上所述:原式的值为2或0或20或72.
练习册系列答案
相关题目