题目内容
【题目】若抛物线的顶点坐标是,并且抛物线与轴两交点间的距离为8,试求该抛物线的关系式,并求出这条抛物线上纵坐标为10的点的坐标。
【答案】;,
【解析】
已知了抛物线的对称轴方程和抛物线与x轴两交点间的距离,可求出抛物线与x轴两交点的坐标;然后用待定系数法求出抛物线的解析式,进而可求出抛物线上纵坐标为10的点的坐标.
解:设该抛物线的关系式为y=a(x-1)2+16,与x轴的两个交点的横坐标为x1,x2,且x1<x2
∴对称轴x==1,且x2-x1=8;
解得:x1=-3,x2=5,
∴抛物线与x轴两交点为(-3,0),(5,0);
把点(5,0)代入y=a(x-1)2+16,得:16a+16=0,
∴a=-1;
∴该抛物线的关系式为y=-(x-1)2+16,
即y=-x2+2x+15;
将y=10代入,得:-x2+2x+15=10;
解得x1=,x2=;
∴这条抛物线上纵坐标为10的点的坐标为,
练习册系列答案
相关题目