题目内容
【题目】在四边形 ABCD 中,对角线 AC、BD 相交于点 O,过点 O 的两条直线分别交边 AB、CD、AD、BC 于点 E、F、G、H.
(感知)如图①,若四边形 ABCD 是正方形,且 AG=BE=CH=DF,则 S 四边形AEOG= S 正方形 ABCD;
(拓展)如图②,若四边形 ABCD 是矩形,且 S 四边形 AEOG=S 矩形 ABCD,设 AB=a, AD=b,BE=m,求 AG 的长(用含 a、b、m 的代数式表示);
(探究)如图③,若四边形 ABCD 是平行四边形,且 AB=3,AD=5,BE=1, 试确定 F、G、H 的位置,使直线 EF、GH 把四边形 ABCD 的面积四等分.
【答案】【感知】;【拓展】AG=;【探究】当 AG=CH=,BE=DF=1 时,直线 EF、GH 把四边形 ABCD 的面积四等分.
【解析】
感知:如图①,根据正方形的性质和全等三角形的性质即可得到结论;
拓展:如图②,过O作ON⊥AD于N,OM⊥AB于M,根据图形的面积得到mb= AGa,于是得到结论;
探究:如图③,过O作KL⊥AB,PQ⊥AD,则KL=2OK,PQ=2OQ,根据平行四边形的面积公式得到= ,根据三角形的面积公式列方程即可得到结论.
感知:如图①,
∵四边形ABCD是正方形,
∴∠OAG=∠OBE=45°,OA=OB,
在△AOG与△BOE中,,
∴△AOG≌△BOE,
∴S四边形AEOG=S△AOB=S正方形 ABCD;
故答案为:;
拓展:如图②,过O作ON⊥AD于 N,OM⊥AB于M,
∵S△AOB=S矩形ABCD,S四边形AEOG=S矩形ABCD,
∴S△AOB=S四边形AEOG,
∵S△AOB=S△BOE+S△AOE,S四边形AEOG=S△AOG+S△AOE,
∴S△BOE=S△AOG,
∵S△BOE=BEOM=m·b=mb,S△AOG=AGON=AGa=AGa,
∴mb=AGa,
∴AG=;
探究:如图③,过O作KL⊥AB,PQ⊥AD,
则 KL=2OK,PQ=2OQ,
∵S平行四边形ABCD=ABKL=ADPQ,
∴3×2OK=5×2OQ,
∴=,
∵S△AOB=S平行四边形ABCD,S四边形AEOG=S平行四边形ABCD,
∴S△AOB=S四边形AEOG,
∴S△BOE=S△AOG,
∵S△BOE=BEOK=×1×OK,S△AOG=AGOQ,
∴×1×OK=AGOQ,
∴=AG=,
∴当AG=CH=,BE=DF=1时,直线EF、GH把四边形ABCD的面积四等分.