题目内容

【题目】问题情境:如图,在直角三角形ABC中,BAC=90°,ADBC于点D,可知:BAD=C(不需要证明);

特例探究:如图MAN=90°,射线AE在这个角的内部,点B、C在MAN的边AM、AN上,且AB=AC, CFAE于点F,BDAE于点D.证明:ABD≌△CAF;

归纳证明:如图,点BC在MAN的边AM、AN上,点EF在MAN内部的射线AD上,1、2分别是ABE、CAF的外角.已知AB=AC, 1=2=BAC.求证:ABE≌△CAF;

拓展应用:如图,在ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,1=2=BAC.若ABC的面积为15,则ACF与BDE的面积之和为 .(12分)

【答案】见解析△ABE与△CDF的面积之和为6

【解析】利用∠1=∠2=∠BAC,利用三角形外角性质得出∠4=∠ABE,进而利用AAS证明△ABE≌△CAF;

应用:首先根据△ABD与△ADC等高,底边比值为:1:2,得出△ABD与△ADC面积比为:1:2,再证明△ABE≌△CAF,即可得出△ABE与△CDF的面积之和为△ADC的面积得出答案即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网