题目内容

【题目】如图,已知:在Rt△ABC中,斜边AB=10,sinA= ,点P为边AB上一动点(不与A,B重合),PQ平分∠CPB交边BC于点Q,QM⊥AB于M,QN⊥CP于N.

(1)当AP=CP时,求QP;
(2)若四边形PMQN为菱形,求CQ;
(3)探究:AP为何值时,四边形PMQN与△BPQ的面积相等?

【答案】
(1)

解:∵AB=10,sinA=

∴BC=8,

则AC= =6,

∵PA=PC.

∴∠PAC=∠PCA,

∵PQ平分∠CPB,

∴∠BPC=2∠BPQ=2∠A,

∴∠BPQ=∠A,

∴PQ∥AC,

∴PQ⊥BC,又PQ平分∠CPB,

∴∠PCQ=∠PBQ,

∴PB=PC,

∴P是AB的中点,

∴PQ= AC=3;


(2)

解:∵四边形PMQN为菱形,

∴MQ∥PC,

∴∠APC=90°,

×AB×CP= ×AC×BC,

则PC=4.8,

由勾股定理得,PB=6.4,

∵MQ∥PC,

= = = ,即 =

解得,CQ=


(3)

解:∵PQ平分∠CPB,QM⊥AB,QN⊥CP,

∴QM=QN,PM=PN,

∴SPMQ=SPNQ

∵四边形PMQN与△BPQ的面积相等,

∴PB=2PM,

∴QM是线段PB的垂直平分线,

∴∠B=∠BPQ,

∴∠B=∠CPQ,

∴△CPQ∽△CBP,

= =

=

∴CP=4× =4× =5,

∴CQ=

∴BQ=8﹣ =

∴BM= × =

∴AP=AB﹣PB=AB﹣2BM=


【解析】(1)根据正弦的概念求出BC,根据勾股定理求出AC,根据三角形中位线定理计算即可;(2)根据菱形的性质得到MQ∥PC,根据相似三角形的性质列出比例式,计算即可;(3)根据角平分线的性质得到QM=QN,PM=PN,根据题意得到PB=2PM,得到QM是线段PB的垂直平分线,根据垂直平分线的性质、相似三角形的判定定理解答.
【考点精析】本题主要考查了角平分线的性质定理的相关知识点,需要掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网