题目内容
【题目】如图,AM∥BC,D,E分别为AC,BC的中点,射线ED交AM于点F,连接AE,CF。
(1)求证:四边形ABEF是平行四边形;
(2)当AB=AC时,求证:四边形AECF时矩形;
(3)当∠BAC=90°时,判断四边形AECF的形状,(只写结论,不必证明)。
【答案】(1)见解析;(2)见解析;(3)四边形AECF是菱形
【解析】
(1)利用三角形的中位线定理得出AB∥EF,再由AM∥BC可得出结论;(2)易证ΔADF≌ΔCDE,得出DE=DF,推出四边形AECF是平行四边形,再根据对角线相等的平行四边形是矩形可得结果;(3)利用四边相等的四边形是菱形解答即可.
(1)证明:∵D,E分别为AC,BC的中点, ∴AB∥EF,∵AB∥EF,AM∥BC
∴四边形ABEF是平行四边形
(2)证明:∵AM∥BC
∴∠FAC=∠ACE,∠AFE=∠CEF
∵AD=DC
∴ΔADF≌ΔCDE
∴DE=DF
∴四边形AECF是平行四边形
又∵四边形ABEF是平行四边形
∴AB=EF
∵AB=AC
∴AC=EF
∴平行四边形AECF是矩形
(3)当∠BAC=90°时,四边形AECF是菱形。
理由: ∵∠BAC=90°,BE=CE, ∴AE=BE=EC, ∵四边形ABEF是平行四边形, 四边形AECF是平行四边形, ∴AF=BE,AE=FC, ∴AE=EC=FC=AF, ∴四边形AECF是菱形.
【题目】为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.下表是小明家1至4月份水量和缴纳水费情况,根据表格提供的数据,回答:
月份 | 一 | 二 | 三 | 四 |
用水量(吨) | 7 | 9 | 12 | 15 |
水费(元) | 14 | 18 | 26 | 35 |
(1)规定用量内的收费标准是 元/吨,超过部分的收费标准是 元/吨;
(2)问该市每户每月用水规定量是多少吨?
(3)若小明家六月份应缴水费50元,则六月份他们家的用水量是多少吨?