题目内容
【题目】某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)
(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?
(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?
【答案】(1)熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时;(2)该服装公司执行规定后违背了广告承诺,理由见解析.
【解析】试题分析:(1)根据题目中2个等量关系列出,求出结果;(2)通过一次函数的增减性求出最大值为2800,小于开始的承诺3000,故可以判断违背了广告承诺。
试题解析:
解:(1)设熟练工加工1件型服装需要x小时,加工1件型服装需要y小时.
由题意得:,
解得:
答:熟练工加工1件型服装需要2小时,加工1件型服装需要1小时.……4分
当一名熟练工一个月加工型服装件时,则还可以加工型服装件.
又∵≥,解得:≥
,随着的增大则减小
∴当时,有最大值.
∴该服装公司执行规定后违背了广告承诺. .
练习册系列答案
相关题目