题目内容

【题目】如图,的三个顶点在边长为1的正方形网格中,已知.

(1)画出关于轴对称的(其中分别是的对应点,不写画法)

(2)分别写出三点的坐标.

(3)请写出所有以为边且与全等的三角形的第三个顶点(不与重合)的坐标_____.

【答案】1)见解析;(2A′1-1),B′-4-1),C′-31);(3)(01)或(0-3)或(3-3

【解析】

1)根据网格结构找出点ABC关于y轴的对称点A′B′C′的位置,然后顺次连接即可;

2)根据平面直角坐标系写出各点的坐标即可;

3)利用轴对称性确定出另一个点,然后根据平面直角坐标系写出坐标即可.

解:(1△A′B′C′如图所示;

2A′1-1),B′-4-1),C′-31);

3)如图,第三个点的坐标为(01)或(0-3)或(3-3).

在△ABC和△BAE1中,

BC=AE1=

AC=BE1=

AB=BA

∴△ABC≌△BAE1

同理可证:△ABC≌△BAE2,△ABC≌△ABE3.

练习册系列答案
相关题目

【题目】阅读探索

问题背景:著名数学家华罗庚提出把数形关系(勾股定理)带到其他星球,作为地球人与其他星球进行第一次谈话的语言.20028月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图注》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1所示).勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积进行了证明.

赵爽证明方法如下:

ab为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于,把这四个直角三角形拼成如图1所示形状.

RtDAERtABF

∴∠EDA=FAB

∵∠EAD+EDA=90°

∴∠FAB+EAD=90°

∴四边形ABCD是一个边长为c的正方形,它的面积等于

EF=FG=GH=HE=b-a

HEF=90°

∴四边形EFGH是一个边长为b-a的正方形,它的面积等于

从而证明了勾股定理.

思维拓展:

1、如果大正方形的面积为13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么的值为 .

2、美国第二十届总统加菲尔德也曾经给出了勾股定理的一种证明方法,如图2所示,

他用两个全等的直角三角形和一个等腰直角三角形拼出了一个直角梯形,请你利用此图形验证勾股定理.

证明:∵直角梯形ABCD的面积可以用两种方法表示:

第一种方法表示为:

第二种方法表示为:

=

探索创新:

用纸做成四个全等的直角三角形,两直角边的长分别为ab,斜边长为c,请你开动脑筋,将它们拼成一个能证明勾股定理的图形(不同于上面图1和图2.请画出你拼成的图形,并用你画的图形证明勾股定理.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网