题目内容
【题目】 为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.
(1)求y与x的函数关系式;
(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
【答案】(1)y=6.4x+32;(2)当购买数量x=35时,W总费用最低,W最低=137元.
【解析】
试题(1)利用得到系数法求解析式,列出方程组解答即可;(2)根据所需费用为W=A种树苗的费用+B种树苗的费用,即可解答.
试题解析:(1)设y与x的函数关系式为:y=kx+b, 把(20,160),(40,288)代入y=kx+b得:
解得:∴y=6.4x+32.
(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴∴22.5≤x≤35,
设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,
∵k=﹣0.6, ∴y随x的增大而减小, ∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=137(元).
练习册系列答案
相关题目