题目内容
【题目】如图,已知∠AOB=160°,OD是∠AOB内任意一条射线,OE平分∠AOD,OC平分∠BOD.
(1)求∠EOC的度数;
(2)若∠BOC=19°,求∠EOD的度数.
【答案】(1)80°;(2)61°.
【解析】
(1)先根据角平分线定义得到∠EOD=∠AOD,∠DOC=∠DOB,再求出∠EOC=∠EOD+∠DOC=∠AOB=80°;
(2)先根据角平分线定义得到∠DOB=2∠BOC=38°,再求出∠AOD=∠AOB﹣∠DOB=122°,然后根据角平分线定义得出∠EOD=∠AOD=61°.
解:(1)∵OE平分∠AOD,OC平分∠BOD,
∴∠EOD=∠AOD,∠DOC=∠DOB,
∴∠EOC=∠EOD+∠DOC=∠AOD+∠DOB=(∠AOD+∠DOB)=∠AOB=80°;
(2)∵OC平分∠BOD,
∴∠DOB=2∠BOC=38°,
∴∠AOD=∠AOB﹣∠DOB=122°,
∵OE平分∠AOD,
∴∠EOD=∠AOD=61°.
练习册系列答案
相关题目