题目内容
【题目】如图所示,将矩形纸片ABCD折叠,使得顶点A与边CD上的动点P重合(点P不与点C、D重合),MN为折痕,点M、N分别在边BC、AD上,连结AM、MP、AP,其中,AP与MN相交于点F.⊙O过点M、C、P
(1)若∠AMP=90°,求证:BM=CP;
(2)随着点P的运动,若⊙O与AM相切于点M,又与AD相切于点H,且AB=4,求CP的长.
【答案】(1)证明见解析;(2)3.
【解析】
(1)由矩形的性质得出∠B=∠C=90°,证出∠BAM=∠CMP,由折叠的性质得出AM=PM,由AAS证明△ABM≌△MPC,即可得出结论;
(2)连接HO并延长交BC于J,根据折叠的性质知:MN垂直平分AP,可得:AM=PM,AM为⊙O的切线,可得:∠AMP=∠CMP+∠AMB=90°,又∠BAM+∠AMB=90°,可得:∠CMP=∠BAM,∠B=∠C=90°,可证:△ABM≌△MCP,MC=AB,BM=CP,由AD为⊙O的切线,可得:OJ⊥AD,故:JH∥CP,△MOJ∽△MPC,设PD的长为x,则PC=ABx,OJ=PC,OH=ABOJ可求出⊙O的半径,在Rt△MCP中,运用勾股定理可将PD的长求出,即可得出CP的长.
(1)证明:∵四边形ABCD是矩形,
∴∠B=∠C=90°,
∴∠BAM+∠AMB=90°,
∵∠AMP=90°,
∴∠AMB+∠CMP=90°,
∴∠BAM=∠CMP,
由折叠的性质得:MN垂直平分AP,
∴AM=PM,
在△ABM和△MPC中,,
∴△ABM≌△MPC(AAS),
∴BM=CP;
(2)解:∵AM是⊙O的切线,
∴∠AMP=90°,
∴∠CMP+∠AMB=90°,
∵∠BAM+∠AMB=90°,
∴∠CMP=∠BAM,
由折叠的性质得:MN垂直平分AP,
∴MA=MP,
∵∠B=∠C=90°,
∴△ABM≌△MCP,
∴MC=AB=4
设PD=x,则CP=4﹣x,
∴BM=PC=4﹣x,
连接HO并延长交BC于J,如图2所示:
∵AD是⊙O的切线,
∴∠JHD=90°,
∴HDCJ为矩形,
∴OJ∥CP,
∴△MOJ∽△MPC,
∴OJ:CP=MO:MP=1:2,
∴OJ=(4﹣x),
OH=MP=4﹣OJ=(4+x),
∵MC2=MP2﹣CP2,
∴(4+x)2﹣(4﹣x)2=16,
解得:x=1,即PD=1,
∴PC=3.