题目内容

【题目】为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:

(1)求该班总人数;

(2)根据计算,请你补全两个统计图;

(3)已知该班甲同学四次训练成绩为85,95,85,95,乙同学四次成绩分别为85,90,95,90,现需从甲、乙两同学中选派一名同学参加校级比赛,你认为应该选派哪位同学并说明理由.

【答案】(1)40;(2)见解析;(3)见解析.

【解析】1)利用折线统计图结合条形统计图利用优秀人数÷优秀率=总人数求出即可

2)分别求出第四次模拟考试的优秀人数以及第三次的优秀率即可得出答案

3答案不唯一回答合理即可

1)由题意可得该班总人数是22÷55%=40(人)

2)由(1)得第四次优秀的人数为40×85%=34(人)第三次优秀率为×100%=80%;

如图所示

3答案不唯一选乙理由甲乙平均分相同都是90乙成绩稳(选甲理由甲乙平均分相同都是90但甲的众数是8595更易冲击高分)回答合理即可

练习册系列答案
相关题目

【题目】问题提出:某段楼梯共有10个台阶,如果某同学在上台阶时,可以一步1个台阶,也可以一步2个台阶.那么该同学从该段楼梯底部上到顶部共有多少种不同的走法?

问题探究:

为解决上述实际问题,我们先建立如下数学模型:

如图①,用若干个边长都为1的正方形(记为1×1矩形)和若干个边长分别为12的矩形(记为1×2矩形),要拼成一个如图②中边长分别为1和n的矩形(记为矩形),有多少种不同的拼法?(设表示不同拼法的个数)

为解决上述数学模型问题,我们采取的策略和方法是:一般问题特殊化.

探究一:先从最特殊的情形入手,即要拼成一个1×1矩形,有多少种不同拼法?

显然,只有1种拼法,如图③,即=1种.

探究二:要拼成一个1×2矩形,有多少种不同拼法?

可以看出,有2种拼法,如图④,即=2种.

探究三:要拼成一个1×3矩形,有多少种不同拼法?

拼图方法可分为两类:一类是在图④这21×2矩形上方,各拼上一个1×1矩形,即这类拼法共有=2种;另一类是在图③这1种1×1矩形上方拼上一个1×2矩形,即这类拼法有=1种.如图⑤,即=+= 2+1=3(种).

探究四:仿照上述探究过程,要拼成一个1×4矩形,有多少种不同拼法?请画示意图说明并求出结果.

探究五:要拼成一个1×5矩形,仿照上述探究过程,得出=     种不同拼法.

(直接写出结果,不需画图).

问题解决:请你根据上述中的数学模型,解答问题提出中的实际问题.

(写出解答过程,不需画图).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网