题目内容
【题目】如图,在四边形ABCD中,∠A=∠C=90°,∠B=α,在AB,BC上分别找一点E,F,使△DEF的周长最小,此时,∠EDF=______。(用含α的代数式表示)
【答案】180°2α
【解析】
根据要使△DEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出D关于AB和BC的对称点P,Q,结合四边形的内角和即可得出答案。
如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E,交BC于F,则点E,F即为所求。
∵四边形ABCD中,∠A=∠C=90°,∠B=α,
∴∠PDQ=180°α,
在三角形PDQ中,∠P+∠Q=180°-∠PDQ =α,
∵点P与点D关于AB对称,点D与点Q关于DQ对称,
∴∠P=∠ADE,∠Q=∠FDQ
∴∠ADE+ FDQ=∠P+∠Q=α
∴∠EDF=∠PDQ-(∠ADE+ ∠FDQ)=180°2α
练习册系列答案
相关题目