题目内容
【题目】已知,如图, = = ,那么△ABD与△BCE相似吗?为什么?
【答案】解:∵ = = ,
∴△ABC∽△DBE,
∴∠ABC=∠DBE,
∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,
即∠ABD=∠CBE,
∵ = ,
∴ = ,
∴△ABD∽△CBE
【解析】先根据三组对应边的比相等的两个三角形相似判断△ABC∽△DBE,得到∠ABC=∠DBE,则∠ABD=∠CBE,再利用比例性质由 = 得到 = ,于是根据两组对应边的比相等且夹角对应相等的两个三角形相似可判断△ABD∽△CBE.
【考点精析】通过灵活运用相似三角形的判定,掌握相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)即可以解答此题.
练习册系列答案
相关题目
【题目】某电器超市销售每台进价分别为190元、160元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 1720元 |
第二周 | 4台 | 10台 | 2960 元 |
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于5100元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.