题目内容
【题目】在平面直角坐标系中,点A(2,0),B(0,4),若以B,O,C为顶点的三角形与△ABO全等,则点C的坐标不能为( )
A.(0,﹣4)B.(﹣2,0)C.(2,4)D.(﹣2,4)
【答案】A
【解析】
根据全等三角形的判定定理画图并逐一判断即可.
解:如图所示:
∵A(2,0),B(0,4)
∴OA=2,OB=4,∠AOB=90°
当C1坐标为(0,﹣4)时,B、O、C1同一条直线上,不能构成三角形,故选A;
当C2坐标为(﹣2,0)时,OC2= OA=2,∠C2O B =∠AOB=90°,OB=OB
∴△C2O B≌△AOB,故不选B;
当C3坐标为(2,4)时,BC3= OA=2,∠C3 B O =∠AOB=90°,OB=BO
∴△C3BO≌△AOB,故不选C;
当C4坐标为(﹣2,4)时,BC4= OA=2,∠C4BO =∠AOB=90°,OB=BO
∴△C4BO≌△AOB,故不选D.
故选A.
练习册系列答案
相关题目