题目内容

【题目】如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,AF=AB,已知△ABE≌△ADF.

(1)在图中,可以通过平移、翻折、旋转中的哪一种方法,使△ABE变到△ADF的位置;
(2)线段BE与DF有什么关系?证明你的结论.

【答案】
(1)解:把△ABE绕点A逆时针旋转90°可得到△ADF
(2)解:BE=DF,BE⊥DF.理由如下:

∵△ABE≌△ADF,

∴BE=DF,∠ABE=∠ADF,

而∠AEB=∠DEH,

∴∠DHE=∠EAB=90°,

∴BE⊥DF.


【解析】(1)利用正方形的性质得到∠BAD=90°,而△ABE≌△ADF,则利用旋转的定义可将△ABE绕点A逆时针旋转90°可得到△ADF;(2)利用全等三角形的性质可得BE=DF,ABE=∠ADF,则利用对顶角相等和三角形内角和可判断∠DHE=∠EAB=90°,从而得到BE⊥DF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网