题目内容
心理学家通过实验发现:初中学生听讲的注意力随时间变化,讲课开始时,学生注意力逐渐增强,中间有一段平稳状态,随后开始分散.学生注意力指标数y随时间表t(分钟)变化的函数图象如下.当0≤t≤10时,图像是抛物线的一部分,当10≤t≤20时和20≤t≤40时,图像是线段。
(1)当0≤t≤10时,求注意力指标数y与时间t的函数关系式;
(2)一道数学探究题需要讲解24分钟,问老师能否经过恰当安排,使学生在探究这道题时,注意力指标数不低于45?请通过计算说明.
(1);(2)能,理由见解析.
解析试题分析:(1)直接利用待定系数法求二次函数解析式进而得出答案;
(2)首先利用待定系数法求出一次函数解析式,进而令y=45,有45=-x+95,求出x的值,进而得出讲课后注意力不低于45的时间.
(1)当0≤t≤10时,设抛物线的函数关系式为y=ax2+bx+c.由于它的图象经过点(0,25),(4,45),(10,60),
所以,
解得:,
所以;
(2)当20≤x≤40时,设函数解析式为:y=kx+d,将(20,60),(40,25)代入得:
,
解得:
∴,
令y=45,有45=-x+95,
解得:x=,
即讲课后第分钟时注意力不低于45,
当0≤x≤10时,令y=45,有45=-x2+6x+25,
解得:x1=4,x2=20(舍去),
即讲课后第4分钟时,注意力不低于45,
所以讲课后注意力不低于45的时间有(分钟)>24(分钟),
所以老师可以经过适当的安排,使学生在探究这道数学题时,注意力指数不低于45.
考点:二次函数的应用.
练习册系列答案
相关题目
某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表:
销售单价x (元/件) | … | 55 | 60 | 70 | 75 | … |
一周的销售量y (件) | … | 450 | 400 | 300 | 250 | … |
(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?
(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?