题目内容
【题目】把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的( )
A.内部 B.外部 C.边上 D.以上都有可能
【答案】C
【解析】
试题分析:先根据勾股定理求出两直角三角形的各边长,再由旋转的性质得:∠EBE′=45°,∠E′=∠DEB=90°,求出E′D′与直线AB的交点到B的距离也是5,与AB的值相等,所以点A在△D′E′B的边上. ∵AC=BD=10, 又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°, ∴BE=5,AB=BC=5,
由三角板DEB绕点B逆时针旋转45°得到△D′E′B,设△D′E′B与直线AB交于G,可知:∠EBE′=45°,∠E′=∠DEB=90°, ∴△GE′B是等腰直角三角形,且BE′=BE=5, ∴BG=5,
∴BG=AB, ∴点A在△D′E′B的边上,
练习册系列答案
相关题目