题目内容
【题目】如图,点O是直线AB上一点,OD平分∠BOC,∠COE=90°.
(1)若∠AOC=48°,求∠DOE的度数.
(2)若∠AOC=α,则∠DOE= (用含α的代数式表示).
【答案】(1) ∠DOE=24°;(2)α.
【解析】
(1)先由邻补角定义求出∠BOC=180°-∠AOC=132°,再根据角平分线定义得到∠COD=∠BOC=66°,那么∠DOE=∠COE-∠COD=24°;
(2)先由邻补角定义求出∠BOC=180°-∠AOC=180°-α,再根据角平分线定义得到∠COD=∠BOC,于是得到结论.
解:(1)∵O是直线AB上一点,
∴∠AOC+∠BOC=180°,
∵∠AOC=48°,
∴∠BOC=132°,
∵OD平分∠BOC,
∴∠COD=∠BOC=66°,
∵∠DOE=∠COE﹣∠COD,∠COE=90°,
∴∠DOE=90°﹣66°=24°;
(2)∵O是直线AB上一点,
∴∠AOC+∠BOC=180°,
∵∠AOC=α,
∴∠BOC=180°﹣α,
∵OD平分∠BOC,
∴∠COD=∠BOC=(180°﹣α)=90°﹣α,
∵∠DOE=∠COE﹣∠COD,∠COE=90°,
∴∠DOE=90°﹣(90°﹣α)=α.
故答案为:α.
【题目】寒假结束了,为了了解九年级学生寒假体育锻炼情况,王老师调查了九年级所有学生寒假体育锻炼时间,并随即抽取10名学生进行统计,制作出如下统计图表:
编号 | 成绩 | 编号 | 成绩 |
① | B | ⑥ | A |
② | A | ⑦ | B |
③ | B | ⑧ | C |
④ | B | ⑨ | B |
⑤ | C | ⑩ | A |
根据统计图表信息解答下列问题:
(1)将条形统计图补充完整;
(2)若用扇形统计图来描述10名学生寒假体育锻炼情况,分别求A,B,C三个等级对应的扇形圆心角的度数;
(3)已知这次统计中共有60名学生寒假体育锻炼时间是A等,请你估计这次统计中B等,C等的学生各有多少名?