题目内容

【题目】如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有( )

A.5个
B.4个
C.3个
D.2个

【答案】C
【解析】解:过A作AE⊥BC,

∵AB=AC,

∴EC=BE= BC=4,

∴AE= =3,

∵D是线段BC上的动点(不含端点B、C).

∴3≤AD<5,

∴AD=3或4,

∵线段AD长为正整数,

∴AD的可以有三条,长为4,3,4,

∴点D的个数共有3个,

所以答案是:C.

【考点精析】认真审题,首先需要了解等腰三角形的性质(等腰三角形的两个底角相等(简称:等边对等角)),还要掌握勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网