题目内容

如图,O为矩形ABCD对角线的交点,过O作EF⊥AC分别交AD、BC于点F、E,若AB=2cm,AC=4cm,BC=2
3
cm
,求四边形AECF的面积.
∵四边形ABCD是矩形,
∴ADBC,
∴∠CAD=∠ACB,
∵EF⊥AC,
∴∠AOE=∠COF=90°,
∵O为矩形ABCD对角线的交点,
∴AO=CO,
在△AOE与△COF中,
∠CAD=∠ACB
AO=CO
∠AOE=∠COF=90°

∴△AOE≌△COF(ASA),
∴AE=CF,
又∵ADBC,
∴四边形AECF是平行四边形,
又AO=CO,EF⊥AC,
∴EF垂直平分AC,
∴AF=FC,
设FC=x,
则在Rt△ABF中,BF=BC-FC=2
3
-x,
∴AF2=AB2+BF2
即x2=22+(2
3
-x)2
解得x=
4
3
3

∴四边形AECF的面积=FC•AB=
4
3
3
×2=
8
3
3
cm2
故答案为:
8
3
3
cm2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网