题目内容
【题目】有一个质地均匀的正12面体,12个面上分别写有1~12这12个整数(每个面只有一个整数且互不相同).投掷这个正12面体一次,记事件A为“向上一面的数字是2或3的整数倍”,记事件B为“向上一面的数字是3的整数倍”,请你判断等式P(A)=+P(B)是否成立,并说明理由.
【答案】不成立。理由见解析
【解析】
试题分析:让向上一面的数字是2的倍数或3的倍数的情况数除以总情况数即为事件A所求的概率,向上一面的数字是3的整数倍的情况数除以总情况数即为事件B的概率,比较和得出答案。
解:不成立。理由如下:
∵投掷这个正12面体一次,记事件A为“向上一面的数字是2或3的整数倍”,
∴符合要求的数有:2,3,4,6,8,9,10,12一共有8个,
则。
∵事件B为“向上一面的数字是3的整数倍”,
∴符合要求的数有:3,6,9,12一共有4个,
则。
∵,
∴。
【题目】盒子里装有红球和白球共10个,它们除颜色外其他都相同,每次从盒子里摸出1个球,记下颜色后放回盒子里摇匀再摸.在摸球活动中得到下列表中部分数据.
摸球次数 | 出现红球的频数 | 出现红球的频率 | 摸球次数 | 出现红球的频数 | 出现红球的频率 |
50 | 17 | 34% | 350 | 103 | 29.4% |
100 | 32 | 32% | 400 | 123 | |
150 | 44 | 29.3% | 450 | 136 | 30.2% |
200 | 64 | 32% | 500 | 148 | 29.6% |
250 | 78 | 31.2% | 550 | 167 | |
300 | 32% | 600 | 181 | 30.2% |
(1)请将表中数据补充完整.
(2)画出出现红球的频率的折线统计图.
(3)观察所画折线统计图,你发现了什么?
(4)你认为盒子里哪种颜色的球多?
(5)如果从盒子里任意摸出一球,你认为摸到白球的概率有多大?
【题目】某中学为了筹备校庆活动,准备印制一批校庆纪念册。该纪念册分A、B两种,每册都需要10张8K大小的纸,其中A纪念册有4张彩色页和6张黑白页组成;B纪念册有6张彩色页和4张黑白页组成。印制这批纪念册的总费用由制版费和印制费两部分组成,制版费与印数无关,价格为:彩色页300元∕张,黑白页50元∕张;印制费与总印数的关系见下表。
总印数(单位:千册) | ||
彩色(单位:元∕张) | 2.2 | 2.0 |
黑白(单位:元∕张) | 0.7 | 0.5 |
【1】印制这批纪念册的制版费为 元。
【2】若印制A、B两种纪念册各2千册,则共需多少费用?
【3】如果该校共印制了A、B两种纪念册6千册,一共花费了75500元,则该校印制了A、B两种纪念册各多少册?