题目内容
【题目】如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.
(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求菱形BMDN的周长和对角线MN的长.
【答案】(1)见解析;(2)周长20,
【解析】
(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;
(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,求出MD=5,由勾股定理求出BD的长,得出OB的长,再由勾股定理求出OM,即可得出MN的长.
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,∠A=90°,OB=OD,
∴∠MDO=∠NBO,∠DMO=∠BNO.
∵MN是BD的垂直平分线
∴OD=OB,
在△DMO和△BNO中,
,
∴△DMO≌△BNO(AAS),
∴OM=ON.
∵OB=OD,
∴四边形BMDN是平行四边形.
∵MN⊥BD,
∴四边形BMDN是菱形.
(2)解:设MD=MB=x,则AM=8﹣x.
在Rt△AMB中,由勾股定理得:x2=(8﹣x)2+42,
解得:x=5.即MB=5,
∴菱形BMDN的周长为5×4=20.
在Rt△ABD中,由勾股定理得:BD===4,
∴.
在Rt△BOM中,由勾股定理得:OM===,
由(1)得:OM=ON,
∴.
练习册系列答案
相关题目