题目内容
【题目】直线分别与轴交于两点,过点的直线交轴负半轴于,且.
求点坐标.
求直线的解析式.
直线的解析式为,直线交于点,交于点,求证:.
【答案】(1)(0,6);(2)y=3x+6;(3)证明见详解
【解析】
(1)先把A点坐标代入y=-x+b求出b=6,得到直线AB的解析式为y=-x+6,然后求自变量为0时的函数值即可得到点B的坐标;
(2)利用OB:OC=3:1得到OC=2,C点坐标为(-2,0),然后利用待定系数法求直线BC的解析式;
(3)根据两直线相交的问题,通过解方程组得E(3,3),解方程组 得F(-3,-3),然后根据三角形面积公式可计算出S△EBO=9,S△FBO=9,S△EBO=S△FBO.
(1把A(6,0)代入y=-x+b得-6+b=0,解得b=6,
所以直线AB的解析式为y=-x+6,
当x=0时,y=-x+6=6,
所以点B的坐标为(0,6);
(2)∵OB:OC=3:1,而OB=6,
∴OC=2,
∴C点坐标为(-2,0),
设直线BCy=mx+n,
把B(0,6),C(-2,0)分别代入得 ,解得
∴直线BC的解析式为y=3x+6;
(3)证明:解方程组
解得则E(3,3),
解方程组 得 则F(-3,-3),
所以S△EBO=×6×3=9,
S△FBO=×6×3=9,
所以S△EBO=S△FBO.
练习册系列答案
相关题目