题目内容
【题目】在学习完《有理数》后,小奇对运算产生了浓厚的兴趣.借助有理数的运算,定义了一种新运算“⊕”,规则如下:a⊕b=a×b+2×a.
(1)求2⊕(﹣1)的值;
(2)求﹣3⊕(﹣4⊕)的值;
(3)试用学习有理数的经验和方法来探究这种新运算“⊕”是否具有交换律?请写出你的探究过程.
【答案】(1)2;(2)24;(3)不具有交换律
【解析】
(1)将a=2,b=﹣1代入a⊕b=a×b+2×a计算可得;
(2)根据法则,先计算﹣4⊕=﹣10,再计算﹣3⊕(﹣10)可得;
(3)计算2⊕(﹣1)和(﹣1)⊕2即可得出答案.
(1)2⊕(﹣1)=2×(﹣1)+2×2
=﹣2+4
=2;
(2)﹣3⊕(﹣4⊕)
=﹣3⊕[﹣4×+2×(﹣4)]
=﹣3⊕(﹣2﹣8)
=﹣3⊕(﹣10)
=(﹣3)×(﹣10)+2×(﹣3)
=30﹣6
=24;
(3)不具有交换律,
例如:2⊕(﹣1)=2×(﹣1)+2×2=﹣2+4=2,
(﹣1)⊕2=(﹣1)×2+2×(﹣1)=﹣2﹣2=﹣4,
∴2⊕(﹣1)≠(﹣1)⊕2,
∴不具有交换律.
练习册系列答案
相关题目
【题目】根据下面的研究弹簧长度与所挂物体重量关系的实验表格,不挂物体时,弹簧原长_____cm;当所挂物体重量为3.5kg时,弹簧比原来伸长_____cm.
所挂物体重量x(kg) | 1 | 3 | 4 | 5 |
弹簧长度y(cm) | 10 | 14 | 16 | 18 |
【题目】问题背景:
小红同学在学习过程中遇到这样一道计算题“计算”,他觉得太麻烦,估计应该有可以简化计算的方法,就去请教崔老师.崔老师说:你完成下面的问题后就可能知道该如何简化计算啦!
获取新知:
请你和小红一起完成崔老师提供的问题:
(1)填写下表:
(2)观察表格,你发现与有什么数量关系?请直接写出与之间的数量关系.
解决问题:
(3)请结合上述的有关信息,计算.