题目内容

已知梯形ABCD中,ADBC,且AD<BC,AD=5,AB=DC=2.
(1)如图,P为AD上的一点,满足∠BPC=∠A,求AP的长;
(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q.
①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数关系式,并写出自变量x的取值范围;
②当CE=1时,写出AP的长.(不必写解答过程)
(1)∵ABCD是梯形,ADBC,AB=DC.
∴∠A=∠D
∵∠ABP+∠APB+∠A=180°,∠APB+∠DPC+∠BPC=180°,∠BPC=∠A
∴∠ABP=∠DPC,
∴△ABP△DPC
AP
CD
=
AB
PD
,即:
AP
2
=
2
5-AP

解得:AP=1或AP=4.

(2)①由(1)可知:△ABP△DPQ
AP
DQ
=
AB
PD
,即:
x
2+y
=
2
5-x

y=-
1
2
x2+
5
2
x-2
(1<x<4).
②当CE=1时,
∵△PDQ△ECQ,
CE
PD
=
CQ
DQ

1
5-x
=
y
y+2
1
5+x
=
y
y-2

y=-
1
2
x2+
5
2
x-2

解得:AP=2或3-
5
(舍去).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网