题目内容

【题目】在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.

已知抛物线y=﹣ x2 x+2 与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.
(1)填空:该抛物线的“梦想直线”的解析式为 , 点A的坐标为 , 点B的坐标为
(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;
(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.

【答案】
(1)y=﹣ x+ ;(﹣2,2 );(1,0)
(2)

解:如图1,过A作AD⊥y轴于点D,

在y=﹣ x2 x+2 中,令y=0可求得x=﹣3或x=1,

∴C(﹣3,0),且A(﹣2,2 ),

∴AC= =

由翻折的性质可知AN=AC=

∵△AMN为梦想三角形,

∴N点在y轴上,且AD=2,

在Rt△AND中,由勾股定理可得DN= = =3,

∵OD=2

∴ON=2 ﹣3或ON=2 +3,

∴N点坐标为(0,2 ﹣3)或(0,2 +3)


(3)

解:①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,

则有AC∥EF且AC=EF,

∴∠ACK=∠EFH,

在△ACK和△EFH中

∴△ACK≌△EFH(AAS),

∴FH=CK=1,HE=AK=2

∵抛物线对称轴为x=﹣1,

∴F点的横坐标为0或﹣2,

∵点F在直线AB上,

∴当F点横坐标为0时,则F(0, ),此时点E在直线AB下方,

∴E到y轴的距离为EH﹣OF=2 = ,即E点纵坐标为﹣

∴E(﹣1,﹣ );

当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;

②当AC为平行四边形的对角线时,

∵C(﹣3,0),且A(﹣2,2 ),

∴线段AC的中点坐标为(﹣2.5, ),

设E(﹣1,t),F(x,y),

则x﹣1=2×(﹣2.5),y+t=2

∴x=﹣4,y=2 ﹣t,

代入直线AB解析式可得2 ﹣t=﹣ ×(﹣4)+ ,解得t=﹣

∴E(﹣1,﹣ ),F(﹣4, );

综上可知存在满足条件的点F,此时E(﹣1,﹣ )、F(0, )或E(﹣1,﹣ )、F(﹣4, ).


【解析】解:(1)∵抛物线y=﹣ x2 x+2
∴其梦想直线的解析式为y=﹣ x+
联立梦想直线与抛物线解析式可得 ,解得
∴A(﹣2,2 ),B(1,0),
【考点精析】掌握平行四边形的判定与性质和翻折变换(折叠问题)是解答本题的根本,需要知道若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网