题目内容

【题目】如图,点A,B,C,D是直径为AB的⊙O上的四个点,C是劣弧 的中点,AC与BD交于点E.
(1)求证:DC2=CEAC;
(2)若AE=2,EC=1,求证:△AOD是正三角形;
(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,求△ACH的面积.

【答案】
(1)证明:∵C是劣弧 的中点,

∴∠DAC=∠CDB,

∵∠ACD=∠DCE,

∴△ACD∽△DCE,

=

∴DC2=CEAC


(2)证明:∵AE=2,EC=1,

∴AC=3,

∴DC2=CEAC=1×3=3,

∴DC=

连接OC、OD,如图所示:

∵C是劣弧 的中点,

∴OC平分∠DOB,BC=DC=

∵AB是⊙O的直径,

∴∠ACB=90°,

∴AB= =2

∴OB=OC=OD=DC=BC=

∴△OCD、△OBC是正三角形,

∴∠COD=∠BOC=∠OBC=60°,

∴∠AOD=180°﹣2×60°=60°,

∵OA=OD,

∴△AOD是正三角形


(3)解:∵CH是⊙O的切线,∴OC⊥CH,

∵∠COH=60°,

∴∠H=30°,

∵∠BAC=90°﹣60°=30°,

∴∠H=∠BAC,

∴AC=CH=3,

∵AH=3 ,AH上的高为BCsin60°=

∴△ACH的面积= ×3 × =


【解析】(1)由圆周角定理得出∠DAC=∠CDB,证明△ACD∽△DCE,得出对应边成比例,即可得出结论;(2)求出DC= ,连接OC、OD,如图所示:证出BC=DC= ,由圆周角定理得出∠ACB=90°,由勾股定理得出AB= =2 ,得出OB=OC=OD=DC=BC= ,证出△OCD、△OBC是正三角形,得出∠COD=∠BOC=∠OBC=60°,求出∠AOD=60°,即可得出结论;(3)由切线的性质得出OC⊥CH,求出∠H=30°,证出∠H=∠BAC,得出AC=CH=3,求出AH和高,由三角形面积公式即可得出答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网