题目内容
【题目】如图,在△ABC中,∠B=∠C,AB=16cm,BC=12cm,D为AB的中点.若点P在线段BC上以4cm/s的速度由B向C运动,同时,点Q在线段CA上以a(cm/s)的速度由C向A运动,设运动的时间为t(s)(0≤t≤3)
(1)用关于t的代数式表示PC的长度.
(2)若点P,Q的运动速度相等,经过1s后,△BPD与△CQP是否全等?请说明理由.
(3)若点PQ的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?
【答案】(1) PC=12-4t ;(2) △BPD和△CQP全等,(3) a=
【解析】
(1)根据PC=BC-BP列式即可;
(2)根据时间和速度分别求得两个三角形中BP、CQ和BD、PC边的长,根据SAS判定两个三角形全等.
(3)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;
(1)∵BC=BP+PC
∴PC=BC-BP=12-4t
(2)△BPD和△CQP全等,
理由如下:
∵t=1秒,
∴BP=CQ=4×1=4cm,
∴PC=BCBP=124=8cm,
∵AB=16cm,点D为AB的中点,
∴BD=8cm,
∴PC=BD,
在△BPD和△CQP中,
,
∴△BPD≌△CQP(SAS).
(3)分两种情况讨论:
①若PC=BD,12-4t=8,t=1,CQ=at=4=BP,a=4(不合题意,舍去)
②若PC=BP,12-4t=4t,t=,CQ=at=8=BD,a=.
∴a=
练习册系列答案
相关题目