题目内容
【题目】小明研究二次函数(为常数)性质时有如下结论:①该二次函数图象的顶点始终在平行于x轴的直线上;②该二次函数图象的顶点与x轴的两个交点构成等腰直角三角形;③当时,y随x的增大而增大,则m的取值范围为;④点与点在函数图象上,若,,则.其中正确结论的个数为( )
A. 1B. 2C. 3D. 4
【答案】D
【解析】
根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.
解: 二次函数=-(x-m)2+1(m为常数)
①∵顶点坐标为(m,1)且当x=m时,y=1
∴这个函数图象的顶点始终在直线y=1上
故结论①正确;
②令y=0,得-(x-m)2+1=0
解得:x=m-1,x=m+1
∴抛物线与x轴的两个交点坐标为A(m-1,0),B(m+1,0)
则AB=2
∵顶点P坐标为(m,1)
∴PA=PB=,
∴
∴是等腰直角三角形
∴函数图象的顶点与x轴的两个交点构成等腰直角三角形
故结论②正确;
③当-1<x<2时,y随x的增大而增大,且-1<0
∴m的取值范围为m≥2.
故结论③正确;
④∵x1+x2>2m
∴>m
∵二次函数y=-(x-m)2+1(m为常数)的对称轴为直线x=m
∴点A离对称轴的距离小于点B离对称轴的距离
∵x1<x2,且-1<0
∴y1>y2
故结论④正确.
故选:D.
练习册系列答案
相关题目