题目内容
【题目】平面直角坐标系中有两点、,我们定义、两点间的“值”直角距离为,且满足,其中.小静和佳佳在解决问题:(求点与点的“1值”直角距离)时,采用了两种不同的方法:
(方法一):;
(方法二):如图1,过点作轴于点,过点作直线与轴交于点,则
请你参照以上两种方法,解决下列问题:
(1)已知点,点,则、两点间的“2值”直角距离.
(2)函数的图像如图2所示,点为其图像上一动点,满足两点间的“值”直角距离,且符合条件的点有且仅有一个,求出符合条件的“值”和点坐标.
(3)城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走,因此,两地之间修建垂直和平行的街道常常转化为两点间的“值”直角距离,地位于地的正东方向上,地在点东北方向上且相距,以为圆心修建了一个半径为的圆形湿地公园,现在要在公园和地之间修建观光步道.步道只能东西或者南北走向,并且东西方向每千米成本是20万元,南北方向每千米的成本是10万元,问:修建这一规光步道至少要多少万元?
【答案】(1)10 (2), (3)
【解析】
(1)根据直角距离的公式,直接代入求解即可;
(2)设点C的坐标为,代入直角距离公式可得根据根的判别式求出k的值,即可求出点C的坐标;
(3)如图,⊙C与线段AC交于点D,过点D作与AB交于点E,先证明△ADE是等腰直角三角形,从而得出,再根据直角距离的定义,即可求出出最低的成本.
(1)∵,点,点
∴;
(2)设点C的坐标为
∵
∴
∵
∴
∴
∵符合条件的点有且仅有一个,且
∴
解得
∴
解得
∴
故,;
(3)如图,⊙C与线段AC交于点D,过点D作与AB交于点E
由题意得
∴
∵
∴△ADE是等腰直角三角形
∴
∵步道只能东西或者南北走向,并且东西方向每千米成本是20万元,南北方向每千米的成本是10万元
∴步道的最短距离为A和D的直角距离,即
最低总成本(万元)
故修建这一规光步道至少要万元.
【题目】随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:
收费方式 | 月使用费/元 | 包时上网时间/h | 超时费/(元/min) |
A | 7 | 25 | 0.01 |
B | m | n | 0.01 |
设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB.
(1)如图是yB与x之间函数关系的图象,请根据图象填空:m= ;n=
(2)写出yA与x之间的函数关系式.
(3)选择哪种方式上网学习合算,为什么?
【题目】在“全民读书月”活动中,小明调查了班级里40名同学本学期购买课外书的费用情况,并将结果绘制成如图所示的统计表和扇形统计图,请根据相关信息,解答下列问题:(直接填写结果)
费用(元) | 20 | 30 | 50 | 80 | 100 |
人数 | 6 | a | 10 | b | 4 |
(1)本次调查获取的样本数据的众数是 元,中位数是 元;
(2)扇形统计图中,“50元”所对应的圆心角的度数为 度,该班学生购买课外书的平均费用为 元;
(3)若该校共有学生1000人,根据样本数据,估计本学期购买课外书花费50元的学生有 人.