题目内容
【题目】在四边形ABCD中,AB=CD,E,F分别为边BC与AD的中点,AE∥CD,延长BA,CD,分别与EF的延长线交于点G,H,连接AH,ED.
(1)求证:AH∥ED;
(2)求证:AE=AG.
【答案】(1)(2)见解析.
【解析】
(1)证△AEF≌△DHF. 得AE=DH.由AE∥DH,得四边形AEDH是平行四边形.(2)连接AC,设AC的中点为O,连接OE,OF.根据三角形中位线性质得OF∥CD,OF=CD,OE∥AB,OE=AB,OE=OF. 得∠OFE=∠OEF,∠DHE =∠AGE. 由AE∥DH,得∠DHE =∠AEG. 所以∠AGE =∠AEG.
(1)∵AE∥CD,
∴∠AEF=∠DHF,∠FAE=∠FDH.
∵AF=FD,
∴△AEF≌△DHF.
∴AE=DH.
∵AE∥DH,
∴四边形AEDH是平行四边形.
∴AH∥ED.
(2)连接AC,设AC的中点为O,连接OE,OF.
∵E,F分别为边BC与AD的中点,
∴OF∥CD,OF=CD,OE∥AB,OE=AB.
∴∠OFE=∠DHE,∠OEF=∠AGE.
∵AB=CD,
∴OE=OF.
∴∠OFE=∠OEF.
∴∠DHE =∠AGE.
∵AE∥DH,
∴∠DHE =∠AEG.
∴∠AGE =∠AEG.
∴AE=AG.
【题目】(12分)某工厂生产一种产品,当产量至少为10吨,但不超过55吨时,每吨的成本(万元/吨)与产量(吨)之间是一次函数关系,函数与自变量的部分对应值如下表:
(吨) | 10 | 20 | 30 |
(万元/吨) | 45 | 40 | 35 |
(1)求与的函数关系式,并写出自变量的取值范围;
(2)当投入生产这种产品的总成本为1200万元时,求该产品的总产量;(注:总成本=每吨成本×总产量)
(3)市场调查发现,这种产品每月销售量(吨)与销售单价(万元/吨)之间满足如图所示的函数关系.该厂第一个月按同一销售单价卖出这种产品25吨,请求出该厂第一个月销售这种产品获得的利润.(注:利润=售价—成本)